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P R E S S U R E - R E C O V E R Y  CURVE IN T H E  F I L T R A T I O N  

OF A G A S - C O N D E N S A T E  M I X T U R E  

O. Yu. Dinariev UDC 532.546 

The dynamics of fluids for condensed gas deposits is described by equations of two-phase 
multicomponent filtration with phase transitions that do not admit analytical solutions. This complicates 
the interpretation of pressure-recovery curves (PRC) for production wells, since to process experimental data 
one should have an explicit theoretical formula with one or several free parameters that characterize the 
reservoir properties. 

Let us consider the case where the pressure is assumed to be constant at the hole bottom, and dynamical 
processes in a well can be ignored. We assume that a stationary flow of a two-phase gas-condensate mixture 
(described in [1-3]) is realized prior to the shut-down of a well. Upon shutting down, a complicated process 
of pressure and substance redistribution occurs in a porous medium, which terminates when the mixture 
pressure and composition become equal to the values of these parameters at the injection contour. Reservoir 
engineering experience shows that the pressure equalization proceeds much faster than that of composition 
equalization. Thus, the time it takes for the condensate accumulated in the porous medium near the well to 
resolve is several orders of magnitude greater than the time of observation of pressure rise. This makes it 
possible to simu'late the pressure recovery within the framework of the linear theory of perturbations, since 
the nonlinear character of the filtration equations of a gas-condensate mixture is mainly associated with phase 
transitions. 

Applicability of the linear theory is the key assumption of the present study. It allows one to derive an 
explicit asymptotic formula for PRC. 

We consider an (M + 1)-component mixture (M > 0). Let ni be the corresponding molar densities of 
the components. Hereafter the subscripts i, j ,  and k take on the values 0 , . . . ,  M, and the subscripts a and 
take on the values 1 , . . . ,  M. It is assumed everywhere that summation is performed over repeat subscripts. 
We study only isothermal processes and, therefore, the dependence of all mechanical and thermodynamic 
quantities on temperature is ignored. 

For homogeneous states of the mixture, statistical physics [4] enables one to calculate the free energy 
per unit volume f = f ( n i ) ,  which is a smooth and one-valued function of the components' density ni. The 
thermodynamic relations 

df  = aeidni, f = - p  + ~eini, (1) 

are valid, where ~ei are the chemical potentials and p is the pressure. From (1) follows the Duhem equality 

dp = nidaei. (2) 

If the function f = f ( n i )  is convex, the homogeneous states of the mixture are then thermodynamically 
stable in volume. For a two-phase system of the gas-condensate type, this function is not convex. In this case, 
thermodynamic stability of the homogeneous state ni is checked in considering virtual separations into the 
liquid and gas phases ni and nil: 

ni  = sn l + (1 - s)ni , (3) 
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where s is the volume portion of the liquid phase (condensate). If the quantity 

f* = sf(nil)  + (1 - s)f(nig) (4) 

is less than f (ni ) ,  the homogeneous state is thermodynamically unstable. The heterogeneous state (3) that 
ensures a minimum value of (4) is stable. 

Let us redetermine the free energy per unit volume f = f (ni )  in a two-phase medium using formula 
(4), which specifies the free-energy value in a stable heterogeneous state. Thus, instead of the original function 
f = f(ni),  we consider its convex shell (denoted below by the same symbol). The new free energy is a twice- 
differentiable function. It is easy to verify that with the new definition of free energy, thermodynamic relations 
(1) and (2) still hold, and now ~ei and p are the chemical potentials and the pressure in each phase of the 
two-phase medium. Thus, free energy allows one to calculate the molar phase densities nig and nit, the volume 
portion of the condensate s, and also the chemical potentials and the pressure in the mixture from the known 
molar density ni of the mixture. 

Let an unsteady filtration flow of cylindrical symmetry occur in a uniform isotropic reservoir with 
porosity m and permeability k in the vicinity of a production well. Denote the distance to the well axis by r. 
The local conservation laws for the components hold [5]: 

+ r-lO,(rJ ) = O. (5) 

With capillary forces ignored, according to Darcy's law, the following relations are valid for flows Ji: 

Ji = -kKiOrp, Ki = fgnigt~-g I "F f lni l lg ' !  1. (6) 

The quantities hi, nig, and nil are related by relation (3). In relation (6),/~g = i~g(nig) and/~t = I~t(nit) 
are the shear viscosities of the gas and of the condensate respectively, and fg = fg(S) and ft = ft(s) are the 
permeabilities of the gas and of the condensate. The quantities s, nig, and nit are thermodynamic functions 
of the densities hi. Therefore, system (5) is complete for unknown functions ni = ni(t, r). 

We shall consider the boundary conditions. Let rw be the well radius over a drill bit and r0 be the 
injection-contour radius. In view of the formulation of the problem, one should impose the following boundary 
conditions on the pressure: 

= { = 0, t > 0; (7) P,o, t ~< 0, 0~p ~=r,,, P F~I ' I / /  

pl,_-,o =p0, po < p0 (8) 

The so-called retrograde condensation is characteristic of gas-condensate deposits: under pressure 
decay, the gas phase becomes thermodynamically unstable and a liquid condensate falls out [6]. The condensate 
acquires hydrodynamical mobility only near production wells where it can occupy a considerable part of the 
pore volume. Denote the concentrations of gas-phase components that are fed to the well injection contour 
by ci0 (ci0 > 0). If Pd is the pressure of the onset of condensation for a mixture of this composition, then, 
generally speaking, po >>- Pd. 

M 
We impose the following boundary condition on the mixture composition ci = ni /  F_, nj: 

j=0  

ci ~=r0 = ci0. (9) 

We introduce into consideration the quantities 

M M M 
n g = ~_,nig, n t =  ~ n i t ,  K =  ~ _ , K i=  fgng#; 1+flaIl.t? 1, C i =  K i / K .  

i=0 i=0 i=0 

By definition, the quantities Ci can be interpreted as the concentrations of the components of a mixture 
that separates under pressure p into the same phases as the original mixture. The corresponding complete 
molar density N, the partial densities Ni, and the liquid-phase portion S are determined by the formulas 

N = K/(fg#-~ 1 + ftl~'i'l), Ni = NCi = (1 - S)nig +Sni t ,  S = ft/~tl/(fgl~-~ 1 + ftl~tl).  (10) 
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We consider an inverse problem of determination of the parameters of the initial mixture ni from the 
known values of 6 ' /and p. With known Ci and p, the thermodynamics makes it possible to find the values of 
nig, nil, and S. To determine the value of s, one can use Eq. (10). For unique solvability of Eq. (10), in the 
class of processes considered (where the gas phase is necessarily present) we assume that there is no mobility 
threshold for the liquid phase. In the last case, the right-hand side of Eq. (10) is a strictly monotonic function 
of s, for s < 1. According to (3), one can calculate the partial densities for the entire mixture ni from the 
known ~, nig, and nil. 

We introduce the coordinate r /= ln(r/r~0). Problem (5)-(9) can then be rewritten as follows: 

mOt(r2ni) - kOT( KCiOTp ) = 0; (11) 

= Pw, t <~ O, O.p[7=o = O, t > 0 ;  (12) P 7=0 

P 7=r = P0; (13) 

Ci 7=r = C/0, (14) 

where ~ = ln(ro/r~,). Boundary condition (14) follows from (9) with allowance for the inequality P0 >/pd. 
Recall the properties of the steady-state solutions of problem (11)-(14) [1-3] that are derived if 

condition (12) is replaced by 

piT=0 = (15) 

In the stationary case, from (11) and (14) it follows that 

Ci = cio, KOTp = q = O / ( 2 r k h ) .  (16) 

Here the integration constant Q is the well debit in moles per unit time and h is the reservoir capacity. 
According to (16), the pressure is determined from the ordinary differential equation p = p(r/+ a, q, c/0). The 
free parameters a and q are found from boundary conditions (13) and (15). 

Thus, if boundary conditions (13) and (15) are not used, one can obtain a steady-state solution for 
densities in the functional form ni = ni(ri + a, q, c/o). 

�9 Below, the values calculated for the stationary solution are asterisked. Determine the vector fields 
e~ = e~(r/) (j is the field number a n d / i s  the component number) by the formulas 

~.~ fOni'~ ( Oni ~ a a( OP ),( --1 0 
= , ,  07p,) (17) 

0 
m'{(rl) = ~ ni(rh q, c/o). (18) 

In differentiating with respect to the concentrations in formulas (17) and (18), one should take into 
account that Ca and ca0 depend actually only on M in view of the normalized equalities 

M M 

Y~ Ci = ~ c/o = 1. 
i=0 i=0 

It is obvious that the vector fields e!(r/) form the basic set in the (M + 1)-dimensional space for each 77. 
Using this basic set, one can expand any other vector field. Let 6hi = 6hi(t, rl) be the small perturbations of 
the stationary solution. Let us expand with respect to the basic set 6ni(t, rl) = ei(rl)zi(t ,  rl) and substitute it 
into the dynamics equation for perturbations following from (11): mOt(r26ni) - kOq(6KCiOTp + K6CiOTp + 

K c ,  OT p) = o. 
We then obtain the system of (M+ 1) linear equations for ( M +  1) unknown functions z i ( t  , 77) describing 

the perturbation dynamics: 

m(kq)-lr2GJaO~x i - 07xa = 0; (19) 
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rn(kq)-lr2pJcOtxj - cO.(vaxa) -cO~xO2 = 0 
(20) 

[ M (OlnK'~ . ] 
. '  = E ~i, ~a = G~ = ~,~- c,o~ . 

~=0 ~.-'g-d~. / p.' 
The pressure-field perturbations are representable by the formula 

@ = ~xo, ~ = cO.p.. (21) 

The boundary and initial conditions for the functions xj(t  , TI) are obtained from (12)-(14) and (21) as 

(O.zo + 7xo) ,7=o = - 1 ,  t > O; (22) 

xil,l= r = O; (23) 

z i = O ,  t~<O. (24) 

In relations (22), ~ ---- 07 ln]~[.=0. It is convenient to solve problem (19), (20), and (22)-(24) using the 

method of Fourier transform. We separate the variables: 

Substituting these expressions into relations (19), (20), and (22)-(24), we obtain the following system 
of ordinary differential equations and boundary conditions: 

iwAy + iwvlz - O.y = 0; (25) 

( i . ~  ! + h~)y + i .~fiz - 0 ~  = o; (26) 

(O.z + 72)[.= ~ = i (2 r ) - l (w  - ie)-1; (27) 

z],=r = 0; (28) 

y],=r = o. (29) 

Here y is a column vector with components ya, A is an M • M matrix with components Aao = m(kq)-Ir2G~, 
vl is a column vector with components via = m(kq)- Ir2G~ hi is a row vector with components hia = 
( m ( k q ) - l r 2 f  - v~A~a), h2 is a row vector with components h2a = ( - 0 . u a ) ,  ]'1 = (m(kq)- lr2p ~ - VOVl~), 
and r is an infinitesimal positive quantity. It should be noted that the matrix A and the vector Vl vanish 
identically when the pressure p exceeds the pressure of onset of condensation Pd. 

We consider the incomplete problem (25) and (29). Define the matrix-valued function U = U(y, ~) as 
a solution of the Cauchy problem: O.U(71, ~) = iwA(71)U(T h ~) and U(~, ~) = 1. 

A solution of incomplete problem (25) and (29) is found by the formula 

r 

y(w, 77) -- icd J U(7], ~)vi (~)z(r ~)d~, 

whose substitution into Eq. (26) yields the integrodifferential equation 

iw(iwLi + L2)z + iwf l z  - 02z = 0, (30) 

where the operators La (a = 1 and 2) are determined by the formulas 

r 

(L.z)(TI) = / h.(TI)V(~], ~)Vl(~)z(w, ()d~. 
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We thus obtained the complete problem (27), (28), and (30) to determine the pressure dynamics. 
We shall seek intermediate asymptotics of PRC for the case ~ = +oo and replace condition (28) by the 
boundedness condition for the function z at infinity. We also assume that  as ,/--~ +oo, the function r-2f l ( , / )  
tends to a positive constant ~o, while the function f0('/) = (f1('7) - r2q0) decreases rapidly. Define the function 
a = a(w) from the relations a 2 = iw~ and R e a / >  0 and let R = R(w) be the next operator in L2(0, +oo): 

+co 

(Rg)(rl) -- f G(r/,r/1)g(r/1)dr/1, g e L2(0,+0o).  
0 

Here 

DiKo(ar), 71 >t 711, 
G(r/,r/1) = V2Ko(ar) + Dalo(ar), ,7 < r/t; 

Ka and Ia are the MacDonald functions [7], and the coefficients Da = Da(rh) are found from the system of 
linear equations 

o,a =,,+o-O@.=,,_o= 1. 
Then, from Eq. (30) and boundary conditions (27) and (28), we obtain the following operator equation 

for the function z(r/): 

(I + iwT)z  = zo, (31) 

where T = T(w) = R(iwL1 + L2 + fo) and zo(w,,l) = i(2~r)-lKo(ar)/(TKo(ar~) -arwKl(arw)). 
Recall that  PRC are experimentally determined in the t ime range from tens of seconds to hours, which 

corresponds to the frequency range 

10 -4 nz  < [w[ ~ 10 - I  Hz. (32) 

Therefore, to obtain an asymptotic formula for PRC,  it is sufficient to approximate the function z in 
frequency range (32), and then, according to (21), calculate the pressure recovery using the formula 

Ap(t)=dl/exp(iwt)r  ( r  =0, dl=fl[,__0 ). 

Let us consider Eq. (31). The operator T(w) is interpreted as a linear continuous mapping onto the 
semi-axis ,/ /> 0 in the space of continuous bounded functions. Its norm can be est imated by numerical 
simulation of steady-state flows using the method of [2]. As a result, it appears that  in the range of (32), we 
have Iwl [[T]I << 1. Therefore, it is admissible to set z ~ z0. In the expression for z0, we retain only the main 
terms with low frequencies using the asymptotic functions for the MacDonald functions [7]: 

r ~ z0 ~=0 ~ i(21r)-1(w - ie)-I ln(2-1arw)(Tln(2-1arw) + 1)-1" 

The results of numerical simulation of steady-state flows show that  the value of r = r ~  -1 is close, in 
order of magnitude,  to 10 sec, while the dimensionless quanti ty 7 in the case where the seam pressure p~, is 
much lower than the pressure of onset of condensation Pd is of the order of 10 -2. Therefore, in the range of 
(32), we have [7 ln(2-1arw)[ << 1. With allowance for the last remark, we obtain the expression for r whose 
analytical form coincides with that  obtained in the problem of PRC under one-phase filtration [8]. By this 
analogy, one can write at once the asymptotic relation for PRC: 

Ap(t) = 2-1dl(ln(tr -1) + C), (33) 

where C is the Euler constant.  We rewrite the formula with separation of the debit dependence in explicit 
form: 

Ap(t) = 2-1qd2(ln(tr -1) + C), d2 = K . ' [  (34) 
,7=0" 
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Thus, in the case of gas-condensate mixture filtration, the PRC form is similar to the case of one-phase 
liquid filtration. However, unlike the one-phase case, to determine the permeability k using (33) or (34), it is 
necessary to perform an independent numerical simulation for steady-state flow (for example, to determine 
the quantities d2 and r). 
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